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The boundary-value problem for irrotational surface waves is derived from a varia- 
tional i.ntegra1 I with the Lagrangian density 2= 6qt - where E(x, t )  is the value of 
the velocity potential a t  the free surface, y = ~ ( x ,  t ) ,  and 2 is the energy density in x 
space. 2 then is expressed as a functional of 6 and 7, qua canonical variables, by 
solving a reduced boundary-value problem for the potential, after which the require- 
ment that I be stationary with respect to independent variations of [ and 7 yields a pair 
of evolution equations for 6 and 7. The Fourier expansions 6 = po,(t)  $E(x) and 
7 = q,(t) $,(x), where{$n} is an orthogonal set of basisfunctions,reduce I to  Hamilton's 
action integral, in which the complex amplitudes p ,  and qn appear a6 canonically 
conjugate co-ordinates, and yield canonical equations forpn and qn that are the spectral 
transforms of the evolution equations for 6 and 7. The evolution equations are reduced 
(asymptotically) to partial differential equations for E and 7 by expanding &'in powers 
of a = a/d and p = (d/1)2, where a and I are scales of amplitude and wavelength. 
Explicit third approximations are developed for = O(a). 

1. Introduction 
We consider irrotational gravity waves in an ideal homogeneous liquid that fills 

a rigid basin B (which may be laterally unbounded). Let x and y be horizontal and 
vertical co-ordinates, with y = -d(x) at the bottom and y = 0 at the quiescent free 
surface, and let @(x, y, t )  be the velocity potential (V# = particle velocity), with 

9 = 6(x, t ) ,  Y = 7(x,  t )  (l.la, b )  

at the displaced free surface. The boundary-value problem may be deduced from the 
variational principle 

SI = S//R2'dxdt = 0, 2= &-% (1.2a, b)  

where (1.2c) 

R is an arbitrary region in x, t space, dx is the element of area, and F a n d  9'- are 
kinetic and potential energy densities in x space. The requirement that I, qua func- 
tional of @ and 7, be stationary with respect to independent variations 84 and 87 that 
vanish on aR (the boundary of R) yields 

V'@=O ( - d < y < r ) ,  (1.3) 

n . V # = O  on aB (1.4) 
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and #t/ = r t+V#*Vr ,  # t + w # ) z + 9 r  = 0 (Y = r ) ,  (1.5a, b )  

where aB (the boundary of B )  comprises both the bottom (y = - d )  and the lateral 
boundary (which is distinct from the bottom only if B is at least partially cylindrical). 

Surface tension may be incorporated by adding the appropriate terms to Y in 
( 1 . 2 ~ )  and to the left-hand side of (1 .5b) .  

The variational principle (1.2), as implemented in the penultimate paragraph, is 
a dynamical extension of the kinematical principle [which follows from Serrin's (1959) 
statement of Dirichlet's principle] 

which yields (1.3)-(1.5a) for the variation a# with &# = 0 on 8s and 7 fixed. It is 
a dynamical equivalent of Luke's variational principle (Luke 1967; Whitham 1974, 
5 13.2) 

aSSxdxdtS ld{Ct+:(v#)z+9yjd?/  = 0 (1.7) 

by virtue of the identities 

2. Canonical variables 
Having established that (1.2) does imply the conventional description of the surface- 

wave problem, (1.3)-( 1.5), in terms of the dependent variables # and r ,  we henceforth 
suppose that I has been expressed as a functional of 6,  r and rt by solving the boundary- 
value problem posed by (1.3), (1.4) and (1.1) for Q and substituting the result into 
( 1 . 2 ~ )  to obtain the functional 

-EPK rtl = 6% - X", rl, (2.1) 

where % is a functional of 6 and 7 that depends implicitly on their values for all x at 
each particular value oft  (which therefore enters the calculation of %only as a para- 
meter). The requirement that I be stationary with respect to independent variations 
86 and &,I that vanish on aR then yields 

which implies the evolution equations 

(2.3a, b )  

where F5% and q,# are the functional derivatives of the functional %with respect 
to the functions $ and r (see Volterra 1959, 526ff.; or Finlayson 1972, $9.1) .  

The Lagrangian functional (2.1) bears a striking resemblance to the Lagrangian 
L = pq - H ( p ,  q) of classical mechanics, wherein the vectors p = (p,(t)> and q =- {qn(t)} 
are Hamilton's canonically conjugate (or simply canonical) co-ordinates and N is the 
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Hamiltonian, and the evolution equations (2 .3 )  bear a similar resemblance to Hamil- 
ton’s canonical equations. Moreover, it follows directly from ( 2 . 1 )  that (note that 9 is 
a local function of rt )  

is the analogue of the generalized momentum p = {aL/aq,}. That the analogy is 
precise may be inferred from a spectral description of the motion, in which the spectral 
amplitudes of [ and 7 appear as the canonical co-ordinates and Hamilton’s canonical 
equations appear as the spectral transforms of (2 .3 ) ;  see $ 3 .  It therefore seems appro- 
priate to designate c and 7 as canonical variables, % as the Hamiltonian functional 
and ( 2 . 3 )  as the canonical equations for the surface-wave problem. 

We may replace % in (2.1)-(2.3) by any functional that differs from ( 1 . 2 ~ )  only 
by a pure divergence in x space. In  particular, a Green’s-theorem transformation 
of the kinetic-energy integral leads to the equivalent functionals 

(2 .4 )  < = a q a r l t  

%* = r* + ?? =K* = gK{ 1 + (vr)2} - vg 071, ( 2 . 5 ~ ’  b )  

where 

is determined by the aforementioned solution of (1.3), (1.4) and ( 1 . 1 ) .  

may be derived from them in the form 

C(x7 t )  = C K  rl = $JX, 7, t )  (2.6) 

The evolution equations ( 2 . 3 )  are equivalent t o  the free-surface conditions (1 .5 )  and 

and 

It therefore is unnecessary to calculate X explicitly if only the evolution equations 
are required.t 

We remark that (2 .5b)  and (2 .7b)  imply [yt = 2F* and 

(9*-1V’)dxdt  = (T- V ) d t  = L d t ,  (2 .8 )  
I =  ss, s s 

which is Hamilton’s action integral. It is possible, in principle, to express L as a 
functional of 7 and qt by solving (2 .7 )  for [[r,  r t ] ,  and then to deduce the governing 
equation for 7 from Hamilton’s principle; however, such a formulation appears to be 
practical only for a spectral description. 

3. Spectral description 
Pursuing the analogy suggested by ( 2 .  1)-(2.4),  we pose the Fourier expansions 

~ ( x ,  t )  = qn(t)  $n(X)’ [(x, t )  = ~ n ( t )  $Z(X), ( 3 . l a ,  b )  

where q,(t) and p , ( t )  are complex spectral amplitudes, {$,(x)} is a complete set of 
functions in the x domain X and is orthogonal in the Hermitian sense 

< $ m $ 3  = Jmn7 (3.2) 

Watson & West (1975) derive equivalents of (2.7) and a quadratic (in powers of 7) approxi- 
mation to 5 for deep-water waves (d = a)). They do not use a variational formulation, nor do 
they mention Hamilton’s principle, but they evidently are aware of the canonical character of 
C; and 7. 
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{ ) implies an average over S, $: is the complex conjugate of $n, Srnn is the Kronecker 
delta, and repeated dummy indices are summed over the spectrum of {?,bn}. Substituting 
(3.1) into (2.1)) averaging over S, and invoking (3.2)) we obtain 

L (2) = P n q n - H ,  H = < & [ ~ n $ : )  qn$nI)* ( 3 . 3 ~ )  b) 

The reduced integral I = SLdt is now Hamilton’s action integral, and 8I = 0 

lin = - aHlaqn, Qn = aH/apn, ( 3 . 4 ~ )  b)  

which are the spectral transforms of the evolution equations ( 2 . 3 ~ )  b).  We remark that 
$o = 1 is a non-trivial member of{$n} in (3.1) and that setting n = 0 in ( 3 . 4 ~ )  yields Po, 
which is required for the calculation of the wave-induced pressure. 

The spectral (normal-mode) description is natural for a closed basin, for which the 
$,(x) are the normal modes and are real. The calculation of both the Lagrangian and 
the Hamiltonian has been carried out elsewhere (Miles 1976)t and need not be con- 
sidered further here. 

It also may be applied to  a domain of large (compared with a characteristic 
wavelength) lateral extent (cf. Hasselmann 1967; Watson & West 1975). The appro- 
priate eigenfunctions for deep-water waves are 

$n = ein’’, $: = $-% = $z, ( 3 . 5 4  b) 

where the subscript n implies a parametric dependence on the two-dimensional 
wavenumber -t n and n 3 In\ except in subscripts. The eigenfunctions are orthogonal 
in the extended sense that 

(Hamilton’s principle) implies the canonical equations 

($m. . . $n)=emm. , .n= t  for m+ ...+ n f O ,  (3.6) 

where $, . . . $,, is a product of any order (note that em,, = amZ). The calculation of H 
follows that for a closed basin (cf. Miles 1976)’ with the end result 

hmn = 8mnn+elms(m-n-mn)ql 
+&krrnz{(m+n)m.n+ (ejkrn+ejlm)(jmn+nj.m+nzj.n)}qkql+ ... (3.8) 

is a Hermitian matrix (so that His a Hermitian form). 

4. Laterally unbounded domain of constant depth 

depth in the form 
We pose the solution of (1.3) and (1.4) in a laterally unbounded domain of constant 

#(x, y, t )  = sech ( Z d )  cash { S ( y  + 4) #&x, t ) ,  ( 4 . 1 ~ )  

where x = (a; - V2)) (4.lb) 

t The fact that {pn(t)} is the Fourier transform of l(x, t )  for a closed basin, and hence that 
6 and q are canonical variables, was overlooked in that paper, wherein the Fourier expansion of 
of $(x, y, t )  was related to that of v,(x,f) through the kinematical principle (1.6) prior to the 
calculation of the Lagrangian. 
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is an operational generalization of the scalar wavenumber, and $,(x, t )  = $(x, 0, t ) .  
Expanding $ and $v about y = 0 and then setting y = 7, we obtain 

and (4.3) 

where &.4 = X t a n h X d  (4.4a) 

= X2d{l -&(Xd)2+&(&Yd)4-&(Xd)6+ ...}. (4.4b) 

Inverting the series (4.2) and substituting the result into (4.3), we obtain 

$0 = E - 7 4 6  + 7 4 A E  - Br2X25 + 0(q3.x3t) (4.5) 
and 

g = AE + q x 2 t  - ~ ~ 4 6  + - 7 ~ 2 q ) ~ t  + i ( q 2 ~ -  d q z )  ~ 2 t  + o ( 7 3 ~ 4 5 ) .  

(4.6) 

We proceed on the hypothesis that A may be expanded in even powers of X 
according to (4.4b). This expansion, in conjunction with the preceding expansion in 
powers of 7, corresponds to an asymptotic expansino of the solution in powers of the 
amplitude and dispersion parameters 

a = a/d, p = (d/Q2, (4.7a,  b) 

where a and 1 are scales of amplitude and wavelength. We then require only the simple 
interpretation 

(Xd)2rn f [ E ,  71 = ( - )" d2rnV2m f = Wrnf) (4.8) 

for any even power of X d  operating on the functional f (which is, by definition, 
independent of y), It follows that 2 may be developed in terms of t , ~ ,  Vg, Vq, V2t, 
V2q, ... and that the Frechet operators in (2.3) may be replaced by their Euler- 
Lagrange expansions, 

F~ as - v . (qavt) + vyaywt)  + . . , (4.9) 

and similarly for F7. The end result then is to reduce (2.3) to a pair of partial differen- 
tial equations for 6 and q. 

The preceding development is especially appropriate for the Boussinesq regime, in 
which nonlinearity and dispersion are both weak but comparably significant, so that 
p = O(a), and the nth approximation requires the retention of O(an) terms in the 
evolution equations (n = 1 corresponds to linear, shallow-water theory and n = 2 to 
the conventional Boussinesq approximation). The third approximations to 5, Z and 
the evolution equations are given by 

- 5 = dV2[ + $d3V4E + &d5V6t + 7V2t + d2V2(7V2t), (4.10) 

(4.11) 

( 4 . 1 2 ~ )  

= &(d + 7) (Vt)'- &(d3 + 3d29) (V2t)2 +&d5(VV2E)2 + agq2, 

5t + gq + 9 ( W Z  - 9d2(V202 = 0 

and + V.  {(d + 7) Vc} + $V2{(d3 + 3d9) V"} +&d5V6t = 0. (4.12b) 
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Equations (4.12a, b )  go slightly beyond, in including the higher-order dispersion 
term d6VeE, but are otherwise equivalent to, the two-dimensional Boussinesq equations 
obtained from the variational principle (1 .7) by Whitham (1967), his equations (10) 
and (1 1) with h = d + 7 and P = 6, who remarked specifically on the simplification. 
that attends the choice of 5 as a dependent variable. They also are equivalent to, 
but significantly simpler than, results obtained by Benney & Luke (1964), who used 
$(x, - d,  t ) ,  rather than 6, as a dependent variable. 

The expansion (4.4b) is not available for deep-water waves, for which X d  +oo and 
A N in consequence of which odd pomers of X enter (4.5) and (4.6), and the 
appropriate expansion parameter is all = 0$4. The evolution equations then are not 
reducible to partial differential equations; however, they may be reduced to integro- 
(partial) differential equations and appear to be especially well suited for numerical 
integration (Watson & West 1975). 
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Science Foundation, NSF Grant OCE74-23791, and by the Office of Naval Research 
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